Private Constrained PRFs (and More) from LWE
نویسندگان
چکیده
In a constrained PRF, the owner of the PRF key K can generate constrained keys Kf that allow anyone to evaluate the PRF on inputs x that satisfy the predicate f (namely, where f(x) is “true”) but reveal no information about the PRF evaluation on the other inputs. A private constrained PRF goes further by requiring that the constrained key Kf hides the predicate f . Boneh, Kim and Montgomery (EUROCRYPT 2017) presented a construction of private constrained PRF for point function constraints, and Canetti and Chen (EUROCRYPT 2017) presented a completely different construction for NC constraints. In this work, we show two constructions of LWE-based constraint-hiding constrained PRFs for general predicates described by polynomial-size circuits. The two constructions are based on two distinct techniques that we show have further applicability by constructing weak attribute-hiding predicate encryption schemes. In a nutshell, the first construction imports the technique of modulus switching from the FHE world into the domain of trapdoor extension and homomorphism. The second construction shows how to use the duality between FHE secret-key/randomness and ABE randomness/secret-key to construct a scheme with dual use of the same values for both FHE and ABE purposes. ∗Weizmann Institute of Science, {zvika.brakerski,rotem.tsabary}@weizmann.ac.il. †MIT, [email protected]. ‡ENS, [email protected].
منابع مشابه
Constraint-Hiding Constrained PRFs for NC1 from LWE
Constraint-hiding constrained PRFs (CHCPRFs), initially studied by Boneh, Lewi and Wu [PKC 2017], are constrained PRFs where the constrained key hides the description of the constraint. Envisioned with powerful applications such as searchable encryption, private-detectable watermarking and symmetric deniable encryption, the only known candidates of CHCPRFs are based on indistinguishability obfu...
متن کاملPrivately Constraining and Programming PRFs, the LWE Way
Constrained pseudorandom functions allow for delegating “constrained” secret keys that let one compute the function at certain authorized inputs—as specified by a constraining predicate—while keeping the function value at unauthorized inputs pseudorandom. In the constraint-hiding variant, the constrained key hides the predicate. On top of this, programmable variants allow the delegator to expli...
متن کاملConstraining Pseudorandom Functions Privately
In a constrained pseudorandom function (PRF), the master secret key can be used to derive constrained keys, where each constrained key k is constrained with respect to some Boolean circuit C. A constrained key k can be used to evaluate the PRF on all inputs x for which C(x) = 1. In almost all existing constrained PRF constructions, the constrained key k reveals its constraint C. In this paper w...
متن کاملPrivate Puncturable PRFs from Standard Lattice Assumptions
A puncturable pseudorandom function (PRF) has a master key k that enables one to evaluate the PRF at all points of the domain, and has a punctured key kx that enables one to evaluate the PRF at all points but one. The punctured key kx reveals no information about the value of the PRF at the punctured point x. Punctured PRFs play an important role in cryptography, especially in applications of i...
متن کاملKey Homomorphic PRFs and Their Applications
A pseudorandom function F : K ×X → Y is said to be key homomorphic if given F (k1, x) and F (k2, x) there is an efficient algorithm to compute F (k1 ⊕ k2, x), where ⊕ denotes a group operation on k1 and k2 such as xor. Key homomorphic PRFs are natural objects to study and have a number of interesting applications: they can simplify the process of rotating encryption keys for encrypted data stor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2017 شماره
صفحات -
تاریخ انتشار 2017